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1. Foreword 
 
Crack bridging (e.g., from stitches or pins) and friction have profound and potentially 
very useful effects on delamination crack growth, controlling growth rates (damage 
levels) and the energy absorbed.  However, the implications for structural design 
principles have remained quite obscure.  The difficulty is that no simple analogue of 
crack toughness, which underpins static structural design, exists for dynamic cases with 
large scale bridging effects.  The external shape of the structure and the loading 
configuration dictate stress waves, frictional contact zones, and crack tip stress intensity 
factors in a way that is very difficult to approach, other than by brute case-specific 
numerical simulation.  The problem is compounded by the common occurrence of 
multiple cracking, a complexity that is rarely entertained in laboratory fracture specimen 
design.  Physically sound material models for the important structural problem of 
multiple, nonlinear cracking in laminated structures with large-scale bridging due to 
friction and reinforcement had previously remained undeveloped, in spite of the 
technological importance of these systems. 

We conducted a program of basic research to develop engineering principles for dealing 
with dynamic, multiple cracking damage in laminated structures, including large scale 
crack bridging due to through-thickness reinforcement and friction.  Bridging and friction 
were treated by materials models at the smallest scales relevant to the mechanisms.  By 
reference to the fundamentals of the dynamic growth of single cracks, which is already 
largely understood, simple approaches have been formulated for calculating the 
development of distributed delamination cracks in laminated structures.  To treat large 
scale bridging effects, structural sub-component models must support dimensions of ~ 
100 mm or more.  Our approach therefore bridged scales ranging from this characteristic 
size down to that of micromechanisms (friction, fiber bridging) within the process zone 
of a single crack.  Thus a direct link has been established between structural performance 
and materials design. 

Our research contributes to a systematic method for simplified design of laminated 
engineering structures, which will impact the design and performance of all lightweight 
military vehicles and structures.  Newly gained understanding points the way to 
significant improvements in impact and ballistic resistance via materials and structural 
design. 

The program was conducted with formal collaborations with ARL at Aberdeen, as well as 
universities in the U.S., Italy, Denmark, and Australia.  The university collaborations 
involved Ph.D. candidate students, who made extended stays at Teledyne Scientific 
(formerly Rockwell Scientific). 
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4. Statement of the Problem Studied 
 
In this program of basic research we: 
 
(i) formulated and solved multiple delamination problems by methods that are 

applicable to reasonably complex structures and loading, and correctly described 
fundamental aspects of dynamic delamination crack growth in the presence of 
large scale bridging and friction; 

(ii) provided the fundamental theory necessary to establish engineering principles for 
modeling and designing laminated structures with energy absorption optimized by 
tailoring crack bridging and friction mechanisms. 

The main thrust of our work was theoretical.  Use was planned to be made of new data 
anticipated from a separately funded dynamic fracture study to be conducted at Purdue 
University.  Unfortunately, substantial delays in specimen preparation have resulted in 
these data still being unavailable, which prevented us from completing a quantitative 
study of engineering design principles for pinned laminates, our original goal.  
Nevertheless, while such work cannot be included in this report, the experiments are still 
proceeding and the principal investigators of this project (Dr. Brian Cox with consultative 
support from Dr. Roberta Massabò) are personally committed to analyzing the data when 
they are available (see below). 
 
Our objectives were to: 
 

Conduct basic research into the development of distributed dynamic delamination 
cracks in laminated structures with non-trivial geometry and general loading 
conditions and in the presence of friction and bridging due to through-thickness 
reinforcement such as stitches or rods. 

Develop engineering principles for dynamic, multiple cracking in laminated 
structures, including large scale crack bridging and friction. 

Create a systematic method for simplified design of laminated engineering 
structures containing through-thickness reinforcement, which will shorten the 
design cycle for lightweight military vehicles and structures. 

Indicate means for achieving significant improvements in impact and ballistic 
resistance via materials and structural design, especially via manipulation of friction 
or the bridging effects of through-thickness reinforcement. 
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5. Summary of the Most Important Results 

Our research addressed the objectives by pursuing the following research themes.  
Numbered references refer to the publication list in Section 6. 

(i) We contributed to the development of virtual tests for composite materials, which 
is to say simulations of such high fidelity that they can be substituted for most (but not 
all) of the experiments currently needed to achieve an optimal design [3,5].  The Virtual 
Test paradigm offers a framework for implementing the type of model we developed in 
this program in a materials design tool for dynamic applications.  We also organized a 
minisymposium on Virtual Tests at the International Conference on Computational 
Mechanics in Italy in 2008, which is one of the largest and most important global 
conferences in the field.  An edited special issue of the International Journal of Fracture 
[8]. 

(ii) We modeled the problem of dynamic pullout of a through-thickness bridging 
entity, showing that inertial effects tend to stiffen the pullout response in velocity regimes 
expected in engineering applications [2].  The stiffening, as a rule of thumb, is of order of 
magnitude a factor of two.  The dynamic solutions to the pullout problem possess some 
complex and interesting characteristics. 

(iii) As part of the process of developing engineering design rules for through-
thickness reinforcement, we made a collation of published data on the properties of 
pinned, stitched, and woven laminates [12].  Interpretations of trends in data were made 
based on existing micromechanical models, many of which we have developed in our 
group.  This practically motivated exercise reveals very clearly what properties can be 
manipulated effectively by reinforcement design and what properties are subject to 
variance that is so severe that no useful design principle can be confirmed.  The collation 
also highlights shortcomings in the manner in which data are presented, especially the 
lack of necessary detail concerning the materials studied.  One conclusion of the paper is 
that trends in delamination failure are reasonably well predicted by micromechanical 
models that describe the bridging effects of pins and stitches in static loading, provided 
data on the subject materials are sufficiently complete and carefully [12].  In a related 
study on pinned laminates, we successfully accounted for rate effects at high temperature 
with an elaboration of analytical models of pin mechanics [6].  This encourages similar 
analysis of inertial effects in mixed mode loading. 

(iv) As part of our preparation for modeling multiple delaminations in beams, we re-
visited the fundamental problem of how to calculate the energy release rate for a 
delamination crack accurately using modified beam theory [4].  The results of this work 
have since been confirmed in computational work (finite element methods) by one of our 
colleagues, who reports that they are extraordinarily accurate and significantly more 
accurate than previous modified beam theories (Dr. Qingda Yang, University of Miami, 
private communication). 

(v) We then proceeded with a series of theoretical analyses of the mechanics of 
dynamic delamination cracks.  Key phenomena studied, in both static and dynamic 
conditions, include the shielding and acceleration of one crack by a neighboring crack, 
and the stability of equality of length of a system of simultaneously propagating cracks 
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[1,7,9-11].  These characteristics control the qualitative behavior of multi-delamination 
systems and therefore control damage tolerance and energy absorption. 

(vi) Seeking to couple our theories to experimental observations and test data, we 
undertook a joint program of experiment and theory to determine rate dependence in the 
crack bridging behavior of through-thickness reinforcement under dynamic loading.  We 
seek general materials design data by which optimal damage control and ballistic 
performance can be achieved by intelligent exploitation of stitching and z-pinning in 
composite structures.  In this effort, we carried out detailed theoretical analyses of the 
dynamic delamination behavior expected in tests to be carried out at Purdue University 
(Dr. Wayne Chen).  The analyses bear out just how complicating dynamic effects can be 
to the delamination problem [9-11].  Nevertheless, examination of certain limiting 
conditions that hold in part of the solution space allows very useful conclusions to be 
drawn about the best test conditions for inferring the required dynamic constitutive 
behavior of through-thickness reinforcement [11].  The key paper in this study is 
complete but not yet published [11].  We therefore include it here as an appendix.  A 
highly simplified summary of desirable test conditions has been sent to Purdue [13].  The 
tests are expected to be executed in the next few months and Drs. Massabò and Cox have 
agreed to analyze the data without funding.  Analysis should be complete towards the end 
of 2010. 

The Purdue test program was delayed for two years by difficulty with materials 
processing.  Specimens that were finally delivered from ARL to Dr. Chen were of poor 
quality, containing substantial porosity (unconsolidated material).  The supplier for ARL 
was apparently unable to overcome these deficiencies.  Therefore, we arranged for our 
long-term collaborator Dr. Adrian Mouritz of RMIT University, Melbourne, Australia, to 
fabricate specimens gratis for this test program.  The specimens from Dr. Mouritz were 
delivered to Dr. Chen in the summer of 2009 and one of Dr. Chen’s students is testing 
them in 2010. 

 

 
As our publication list shows, all aspects of this program were conducted in a 
collaborative manner within a global network of university and other researchers.  The 
most important collaboration was with Professor Roberta Massabò of the University of 
Genova, Italy, who was supported by a small subcontract under this program.  A number 
of graduate students were involved in our work. 
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A new graduate student at the University of Genova, who will use the code 
developed by Mr. Lundsgaard-Larsen to analyze dynamic fracture tests. 

Ms. Holly Barth, University of California, Berkeley; Ph. D. candidate. 

 
*Dr. Andrews earned a Ph. D. (Northwestern University) partly while supported by this 
contract. 
 
**Mr. Zhou visited Teledyne Scientific (Rockwell Scientific at the time) as part of his 
thesis work for a six-month assignment in our Thousand Oaks facility under the 
supervision of Drs. Qingda Yang and Brian Cox, beginning January 1, 2006. 
 
**Mr. Lundsgaard-Larsen visited Teledyne Scientific as part of his thesis work to work 
for six months in our Thousand Oaks facility under the supervision of Dr. Brian Cox 
beginning in September, 2006.  After this, he and his supervisors, Dr.s Jorgen Jensen, 
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Further collaborative work – a global network for Virtual Tests 
 
The following three collaborations involve no ARO funding, except to a limited extent to 
enable the participation of Brian Cox at Teledyne Scientific. 
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 A proposal has been written (without charge to ARO) to the Australian 
Research Grants Council with Professor Adrian Mouritz at the RMIT 
University, Melbourne, to fund basic research into through-thickness 
reinforcement. 

 
 A project under Professor Mark Spearing, University of Southampton, 

continues under funding from the UK EPSRC.  Professor Spearing 
collaborates on delamination damage detection experiments using micro-
CT to create 3D images of damage. 

 
 A new agreement involving no funding has been reached with the group of 

Dr. Howard Padmore at the Advanced Light Source at LBL and Professor 
Rob Ritchie, UC Berkeley, to study damage in composites using x-ray 
computed tomography.  Professor Ritchie has made a Ph. D. student, Ms. 
Holly, available for this work. 

 
While these collaborative projects brought no funding to Teledyne Scientific, they 
enabled collaborative work involving further students at RMIT University, Southampton 
University, and UC Berkeley with technical exchange facilitated by visits. 
 

 We continue work on a program awarded by NASA for calibrating 
cohesive laws for delamination propagation in laminated composites 
containing no through-thickness reinforcement.  This work focuses on 
studies in the non-dynamic regime, but formed a useful background to our 
dynamic fracture studies. 

 
All of these collaborations and other contracts contributed to our vision of constructing a 
virtual test for composites. 
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8. Report of Inventions 
 
There have been no inventions in this contract to date. 
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9. Appendix 
 

Lundsgaard-Larsen, C., Massabò, R.  and Cox, B.N., On Acquiring Data for 
Large-Scale Crack Bridging at High Strain Rates, to be submitted to Engng 
Fract. Mechanics. 



On acquiring data for large-scale crack bridging at high strain rates  
 

C. Lundsgaard-Larsen1, R. Massabò2 and B.N. Cox3 

 
1Technical University of Denmark, Lyngby, Denmark 

2DICAT, University of Genova, Genova, Italy 
3Teledyne Scientific Co LLC, Thousand Oaks, CA, U.S.A 

 
 

Abstract. Numerical simulations are used to design test geometries and loading histories that are 
suitable for probing the mode II bridging effect of through-thickness reinforcement at high strain rates.  
The bridging effects are represented by a cohesive law and tests are sought that will determine any rate 
dependence in its parameters.  The End Notched Flexural test is studied, because it allows easy 
application of time dependent loading and has proven to be an information-rich test in the quasi-static 
case.  Information content in the dynamic case is addressed by focusing on regimes within the full 
computed solution space where crack growth is approximately steady-state.  This condition simplifies 
the inverse procedure for identifying model parameters, clarifying the prospective information content 
of experiments.  Numerical results show that hypothetical rate-dependence in the cohesive law causes 
strong and measurable changes in the regime of steady-state behavior, if the tests are properly selected 
to vary the crack sliding speed.  The estimates of information content are conservative, in that analysis 
of the total solution space will necessarily contain more information than analysis of the steady-state 
regime alone. 
 
Keywords: Dynamic Delamination Fracture, End Notched Flexural Test, Dynamic Cohesive Law, 
Computational Modelling, Through-Thickness Reinforcement, Crack Bridging, Parameter 
Identification  

 

1. Introduction 
 
Through-thickness reinforcement such as stitches or pins can increase the delamination resistance of 
laminated polymer or ceramic matrix composites by an order of magnitude or more (Cox et al., 1996; 
Glaessgen et al., 1999; Holt, 1982; Lee and Liu, 1990; Mouritz and Cox, 2000; Rhodes and Williams, 
1981; Sawyer, 1985; Tada and Ishikawa, 1989; Turrettini, 1996).  The load required to propagate a 
delamination crack across fracture specimens can be raised by through-thickness reinforcement, which 
extends the pre-critical domain that precedes unstable crack growth, thus improving ductility and 
damage tolerance.  These trends offer the materials designer significant opportunities for matching the 
performance of a material to specific applications, especially where damage tolerance and energy 
absorption are strongly desired.  However, potential benefits can be pre-empted by adverse effects of 
the reinforcement on other failure mechanisms (Mouritz and Cox, 2000).  Therefore, careful selection 
of the parameters of the through-thickness reinforcement is needed, which must be based on 
experimental characterization of the performance of through-thickness reinforcement in relevant 
dynamic regimes.  The non-trivial question of how to acquire such data is the subject of this paper. 

An expanding body of test data has now been published on the crack bridging effects of stitches and 
pins under static loading, both for single stitches or pins in model specimens and for arrays of stitches 
or pins bridging cracks in delamination specimens (Cartié et al., 2004; Chang et al., 2006; Cox, 2005; 
Dransfield et al., 1994; Dransfield et al., 1998; Jain and Mai, 1995; Jain et al., 1998; Massabò et al., 
1998; Mouritz and Cox, 2000; Rugg et al., 1998; Sun et al., 2004; Tong et al., 1998a; Tong et al., 



1998b; Turrettini, 1996).  The observed mechanisms of deformation of the reinforcement under mixed 
mode loading have been modeled with reasonable success, so that a good understanding exists of the 
main material factors influencing the efficacy of pins or stitches as bridging entities (Chang et al., 
2008; Cox, 2005; Cox and Sridhar, 2002).  The bridging effect can be represented accurately by a 
cohesive traction law in a nonlinear fracture model.  Accurate accounts of static delamination test data 
can be obtained by inserting the traction law into fracture simulations.  

As well as its benefits in static loading, through-thickness reinforcement has also been shown to 
successfully counteract negative effects in dynamic delamination fracture and macrostructural behavior 
that arise from the inertia of the specimen and dynamic vibrations (Andrews et al., 2009; Brandinelli 
and Massabò, 2003).  However, this and other theoretical studies assume that the constitutive behaviour 
of the through-thickness reinforcement is approximately the same under dynamic conditions as it is 
under static conditions.  This may not be the case.  In fact, some indications already exist that rate 
effects should be expected in the traction laws that represent bridging due to through-thickness 
reinforcement.  Experiments in which fibres were pulled out of a substrate at rates of 1 mm/min and 
100 mm/min show that the friction between the pulled out fibres and the laminate increases with speed 
(Liu et al., 2007).  A possible physical explanation given by the authors is visco-elastic behaviour of 
the fibre/matrix interface, coupled with a temperature increase due to friction.  Theoretical studies of 
the micromechanics of fiber pullout also show that the inertia of the fibers will create rate effects in the 
fibre pull-out problem (Cox et al., 2001; Sridhar et al., 2003). 

No research has been reported in which the bridging tractions have been deduced from fracture tests in 
the dynamic regime, where the inertia or dynamic material properties might change the bridging effect.  
This lack can frustrate optimal design, because optimality does not necessarily result from inserting the 
maximum through-thickness reinforcement density.  While some properties rise monotonically as the 
density increases, cost, in-plane properties, and energy absorption can all be affected unfavorably.  
Through-thickness reinforcement is expensive and causes harm to in-plane fibers, compromising 
strength and fatigue life.  If the through-thickness reinforcement is too effective in suppressing 
delamination, it can cause the structure to exhibit brittle failure characteristics, with minimal energy 
absorption, a disadvantage for ballistic performance.  The quest for optimality can therefore be subtle 
and demands quantitative knowledge of the effects of the through-thickness reinforcement.  
Furthermore, to acquire all of this knowledge by repeated cycles of fabricating and testing structures 
with different material compositions is prohibitively expensive. 

The question therefore arises of what experiments will be most useful for acquiring data that determine 
the high strain rate behavior of through-thickness reinforcement.  The desired information-rich 
experiment should: 

 generate dynamic crack propagation in the range of speeds where the effects of through-thickness 
reinforcement will be strongest, in particular avoiding large crack speeds for which the process is 
dominated by the kinetic energy and the effects of the reinforcement become negligible (Sridhar et 
al., 2002); 

 generate crack propagation in the domain where the process zone is developing and also where it is  
fully developed, thus maximizing the information content pertaining to all model parameters; 

 avoid large flexural oscillations of the specimen as well as the development of high order, high 
frequency waves in the desired range of crack speeds; 

 avoid the formation of multiple cracks in the specimen; 

 avoid failure by mechanisms other than delamination fracture. 



Numerical studies are used in this paper to find such experiments. A simplified procedure is proposed 
that allows quick insight into the information content of candidate dynamic fracture experiments. 

2. Choice of specimen geometry and material properties 

The subject specimen is an ENF specimen loaded in three-point bending, see Figure 1.  Choosing an 
ENF configuration for this pilot study avoids the complexity of mixed mode crack conditions and 
allows relation to the well-studied static case of mode II fracture in the presence of large scale bridging 
(Massabò et al., 1998; Massabò and Cox, 1999; Brandinelli and Massabò, 2006). 

The length scales that control nonlinear fracture in delamination beams (slender bodies) under quasi 
static pure mode II loading are well understood (Suo et al., 1992; Massabò and Cox, 1999). The small 
scale bridging length scale, , defines the length of the process zone of a crack propagating under 

small scale bridging conditions, where the length of the process zone is constant and much smaller than 
the crack length and all other relevant lengths of the problem, and the crack propagates with a constant 
fracture energy. Consider a rectangular cohesive law, with 

SSBl

0  the cohesive tractions,  c  the critical 

crack displacement, and 0b cG    the cohesive fracture energy.  The quasi-static small scale bridging 

length is given by: 

 

 SSB IIsl a h  (1) 

 0/(4 )IIs ca E    

 
where /(1 )zx xzE E     with E the longitudinal Young’s modulus and ij  Poisson coefficient.  In thin 

bodies, the lengths of process zones scale with the thickness of the body h. A mode II delamination 
crack approaches the characteristic length from above as it propagates: the process zone length 
increases from zero at crack initiation to some value that is larger than the small scale bridging limit 
and depends on the geometry and loading conditions, and then tends to the small scale bridging 
limiting value.  

The formula in Eq. (1) is accurate length when the applied load can be represented by uniform shear 
tractions acting along the crack faces, the case for a < L in an ENF specimen.  For more complex loads, 
including the ENF specimen with , variations can be expected in the process zone length.  
Variations in  of order unity will also arise when the shape of the cohesive law departs from the 

rectangular law used in deriving Eq. (1) (Massabò and Cox, 1999), e.g., the triangular laws used in this 
paper (Smith, 1989; Bao and Suo, 1992).  Finally, Eq. (1) was derived for quasi static loading 
conditions. Dynamic conditions introduce further variations in the zone length.  For example, the zone 
length in steady state propagation decreases monotonically with crack tip speed (Freund, 1989).  
However, provided the crack tip speed is modest, e.g., vtip < 0.2cR, with cR the Rayleigh wave speed, 
variations are less than 5%.  Moderate velocities are of most interest for studying crack bridging, 
because at higher speeds the kinetic energy of the fracturing material dominates crack propagation and 
bridging has no useful effect (Sridhar et al, 2002). Thus Eq. (1) is only an approximate indicator of the 
zone length in small scale bridging conditions, but is still useful in understanding trends in fracture.   

a L
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The ACK length scale (after Aveston, Cooper, and Kelly, Aveston et al., 1971), , gives an order of 

magnitude indication of the distance a crack must propagate to approach the ACK limit, where bridging 
ligaments remain intact, so that the crack propagates noncatastrophically with a constant critical value 

ACKl



of the applied load. The ACK length scale is given by ACK IIml a h , where 0/ 4IIm ca E 



 for a 

linearly increasing bridging traction law (Massabò and Cox, 1999). 

Specimen dimensions (Fig. 1) were chosen in the simulations to take account of the anticipated length 
scales, and also some other considerations. The specimen length should be longer than the process zone 
length at all times to accommodate steady-state propagation of a mature zone.  However, if the 
specimen becomes very long this will lead to awkwardly large deflections. Simulations show that if the 
loading displacement is applied at a high acceleration at the midpoint of a very long slender specimen, 
the material close to the load point will move much faster than the material distant from the load point, 
which is constrained by inertia. This leads to a deflection shape remarkably different from the quasi-
static case, and this non-equilibrium state will eventually lead to oscillatory behaviour of the specimen. 
This effect, which is also present in an initial transient phase in short specimens, becomes predominant 
when the specimen length is increased, which is the reason for choosing a relatively short specimen of 
a length (between supports) of 2L = 100 mm (Fig. 1).  For specimen thickness, a thicker arm reduces 
the maximum normal stresses at the upper and lower surfaces of the specimen, but increases the size of 
the process zone (Eq. 1). For the chosen thickness of 2h = 10 mm the maximum stresses in the 
longitudinal direction of the beam subject to quasi-static loading are well below the tensile and 
compressive strengths of the assumed material (Table 1). This should ensure avoidance of failures at 
the upper or lower surfaces of the beam in the dynamic tests. Finally, the pre-crack length should be 
long enough to avoid unstable crack growth, yet short enough for the process zone to develop and reach 
a certain speed before the crack tip reaches the end of the specimen.  Based on numerical analysis for 
representative large scale bridging the notch length is chosen to be 20 mm, i.e. 0.4L.  0a

The material is assumed to be linear elastic with material properties typical of carbon fibre reinforced 
epoxy.  Properties correspond to an in-plane quasi-isotropic lay-up as listed in Table 1. 

3. Finite element model 

The 2-D finite element model consists of two layers connected through zero thickness cohesive 
elements that partly cover the beam length (Fig. 2). The pre-crack consists of the part of the beam 
without cohesive elements. A frictionless contact interaction is formulated in a penalty master-slave 
configuration between the two layers to prevent interpenetration. The mesh in the layers is uniform 
with a refinement near the interface with a ratio of four between the side length of the smallest and 
largest elements. Nodes between bulk and cohesive elements are coincident and the side length of the 
cohesive elements is 0.0025L; this length satisfies the requirement that the cohesive zone should span 
several cohesive elements at all times during the simulations. Mesh convergence is found by varying 
the element size.  

Three idealised cohesive laws are considered, one representing a laminate without through-thickness 
reinforcement (triangular) and two representing laminates with through-thickness reinforcement 
(triangular and trapezoidal). The properties of the cohesive laws are illustrated in Fig. 3 and listed in 
Table 2. The shapes of the laws and the parameter values in Table 2 are approximately consistent with 
those expected for z-pins or reinforcing rods or continuous stitches that fail and pull out of the laminate 
(Cartié et al., 2004; Cox, 2005; Turrettini, 1996). The cohesive laws with an area below the traction-

separation curve of 5.0 kJ/mbG  2 and critical displacement 
c
=0.5 mm correspond to laminates with 

through-thickness reinforcement, whereas the area and critical displacement for laminates with no 
through-thickness reinforcement are reduced by a factor of 10 from the triangular case with through-
thickness reinforcement, which is an estimate based on previous experience. The initial linear branch of 



the cohesive laws is chosen to be very stiff to limit the influence of the cohesive elements in the intact 
portion of the beam on the overall compliance of the specimen: the displacement 0  at the end of the 

initial branch is then chosen to be 1.7 and 3.3 microns for the trapezoidal and triangular-shaped 
cohesive laws, respectively. For the simulations performed in the last section of the paper and the 
derivation of behavioral maps, additional values have been used for the parameters 0 , 0  and c .  

In a cohesive interface model there is no crack tip singularity. The position of the crack tip, or leading 
edge of the process zone, is identified as the point where damage starts, namely the point where the 
cohesive element displacement equals 0  and the cohesive traction-displacement relation deviates from 

the initial linear regime. The trailing edge of the process zone is the point where the cohesive element 
displacement equals c  (Fig. 3). 

The model is implemented in the commercial finite element code ABAQUS 6.6, which solves the 
problem in the explicit domain and includes inertia effects.  The 4-node plane strain element CPE4R 
and 4-node element COH2D4 are used for the layers and the interface, respectively. The density of the 
interface elements is chosen so that the total mass of the interface is 1/10 of the total mass, which is 
small enough not to add extra mass to the system and large enough to limit any effects on the 
automatically calculated time step. The implementation of the cohesive laws in ABAQUS is based on 
the damage model proposed by Camanho et al. (2003), which defines the mode I and mode II cohesive 
tractions as functions of a single damage variable (coupled model). Since mode I displacements at the 
interface are always very small in all cases examined, the model is essentially equivalent to a classical 
uncoupled cohesive zone model. 

4. Loading history 

In the simulations the specimen is loaded in displacement control. The loading history is an idealisation 
of experimental loading conditions similar to those of a split Hopkinson pressure bar with a special 
pulse shaper (Song and Chen, 2004). The velocity of the load point is zero at time t = 0 and increases 
linearly to a constant speed  over the time  t0 (Fig. 4). If  is small and  t0 large, the loading situation 

is quasi-static. If the velocity is large and  t0 approaches zero, the loading corresponds to a hard impact 
and the acceleration in the time interval 0 to  t0 becomes large.  

0v 0v

The ramp time  has a large influence on the dynamic fracture behaviour of the specimen. If the ramp 

time is short, high frequency vibration modes may be excited, leading to an oscillating stress state near 
the crack tip. If the ramp time is large, crack propagation may occur before the applied loading speed 
has reached the final value and large values of crack tip speeds and sliding speeds may not be reached. 
The challenge is to choose a ramp time sufficiently small to obtain rapid crack growth, yet sufficiently 
large to avoid a highly fluctuating fracture behaviour. Andrews et al. (2009) analysed the effect of ramp 
time on the dynamic amplification of the energy release rate for specimens with a stationary crack 
subject to a step force with a finite rise time. They found that if the ramp time was equal to the first 
natural vibration period , there was no dynamic amplification, and no subsequent oscillations. 

Conversely, smaller rise times led to oscillations in the specimen. The cases studied in Andrews et al. 
(2009) differ from the present, since loading was force controlled and the crack was stationary. 
However, by considering the fracture behaviour of the tested specimens at various ramp times, the 
choices t0 = T  and t0 =  were found to be suitable compromises to obtain rapid crack growth 

while limiting stress wave effects.  
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The first natural vibration period  was defined through an eigenvalue analysis of the specimen. 

During the analysis the specimen is supported at the three points where it is loaded by the test machine 
in three-point bending (Fig. 1). The bond-line outside the pre-crack is assumed intact and the nodes 
between the two beams are fixed except along the pre-crack where linear elastic cohesive elements are 
inserted. The cohesive elements are given a very large stiffness in the normal direction and a negligible 
stiffness for tangential deformation to allow sliding but restrain normal opening of the pre-crack 
(constrained vibration model). This ensures that only the relevant natural vibration modes will appear 
in the analysis, i.e., normal opening of the pre-crack is prohibited, and that the problem remains linear 
(contact between crack surfaces is avoided). For a specimen of length 2L = 100 mm the oscillation 
period is T  = 188 s.  Therefore, ramp times t =188 and 94 s were chosen for subsequent analyses. 

For a longer specimen of length 2L = 210 mm,  = 588 s, and thus t  = 588 s was chosen for the 

simulations of long specimens described below. 
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5. Results for Quasi-static Loading 

It is beneficial first to consider the results from quasi-static loading to distinguish between static and 
dynamic effects. In the quasi-static analyses in this study a loading rate 0v d /dt  = 0.05 m/s  is found 

to be sufficiently slow, convergence analysis showing no visible dynamic effects. 

5.1 Laminate without through-thickness reinforcement 

In Figure 5, the reaction force vs. applied displacement, and the positions of the leading and trailing 
edge of the crack vs. applied displacement, are plotted for quasi-static loading of a specimen with no 

through-thickness reinforcement ( =0.5 kJ/mbG 2 and 0t T1 ). Initially, the force increases linearly up to 

a load point displacement of 0.2 mm, at which point the leading edge starts to propagate. Propagation is 
stable up to an applied displacement of 0.55 mm. Thereafter, the leading edge of the crack propagates 
unstably, which entails a sudden drop in the applied load and small oscillations in the reaction force 
history; simultaneously, the trailing edge of the crack starts to propagate. The dashed line in subplot a) 
represents the calculated load-displacement relation of the fully cracked specimen. This is calculated 
from shear deformable beam theory by assuming two centre loaded, simply supported beams each of 
thickness h. As expected, the load-displacement relation approaches this line as the crack length 
increases to span the whole length of the specimen. 

The process zone length (found as the distance between the leading and trailing edges of the process 
zone, i.e. the vertical distance between curves in Figure 5b) is shown in Fig. 6 as a function of load 
point displacement.  A maximum process zone length of 13.5 mm is reached just before the unstable 
crack growth occurs.  The zone length decreases monotonically throughout the remaining part of the 

simulation. The estimate of the small scale bridging limit is 0/(4 )SSB cl Eh    13 mm, Eq. (1).  The 

curve in Fig. 6 tends to a smaller horizontal asymptote.  This is due to the fact that a triangular cohesive 
law has been used and the concentrated reaction force at the mid-span generates non-uniform stress and 
displacement fields at the bond line when , whereas Eq. (1) was derived for a rectangular law 
assuming uniform fields. 

a L

5.2 Laminate with through-thickness reinforcement 

Results for the cases representing laminates with through-thickness reinforcement are shown in Fig. 7. 
Dashed lines represent the trapezoidal cohesive law, whereas solid lines represent the triangular. By 
considering the reaction force in subplot a) one sees that, in contrast to the case without through-



thickness reinforcement, unstable crack growth does not occur, due to the stabilizing effects of a large 
process zone. This behavior confirms experimental observations on through-thickness reinforced 
laminates in (Massabò et al., 1998). Consider the crack length diagram in subplot b): in the specimen 
with a triangular cohesive law (solid line), the crack tip (leading edge) extends from the pre-crack at a 
loading displacement of 0.2 mm and the process zone subsequently builds up. As the crack tip passes 
the centre of the specimen (i.e., the load point corresponding to 50 mm on the vertical axis), the curve 
suddenly changes slope, and from here the crack tip moves at a monotonically decreasing rate relative 
to the load point displacement. The process zone size vs. load point displacement is plotted as the solid 
line in Figure 8.  The history of the zone length is qualitatively similar to the non-reinforced case 
plotted in Fig. 6, except that the zone is much longer (in this case the small scale bridging length scale 
of Eq. (1) is 41 mm). 

The specimen with a trapezoidal cohesive law, which is represented by dashed lines in Figs. 7 and 8, 
has a different behaviour. Since the critical stress 0  is only half that for the triangular law, the process 

zone develops at a smaller load and the specimen is more compliant during the first 2 mm of loading 
displacement, see subplot a). In subplot b), the crack tip apparently instantly changes position from 60 
mm to 100 mm at a loading displacement of 3 mm. This is a consequence of the formation of a second 
process zone at the right end side of the specimen when the applied displacement is larger than 1.2 mm. 
The shear stress distribution along the bond-line of an ENF specimen (when ignoring the stress 
concentration due to the notch and edge effects) is constant with a change of sign at the midpoint where 
the load is applied. A process zone may start at a distance from the pre-notch if the shear stress in the 
intact ligament exceeds the critical stress 0 . This occurs in the case of the trapezoidal law. Figure 9a 

shows the stresses in the normal and tangential directions along the cohesive elements in the intact 
ligament of the specimen for an applied displacement of 1.2 mm. In the left part of the specimen (z < 
50 mm), the process zone has developed from the pre-crack for both cohesive laws, since stresses have 
reached the critical values 0 20  MPa and 0 10  MPa, respectively. In the right half (z > 50 mm), 

the specimen is undamaged, but the specimen with the trapezoidal law (dashed line) is close to 
initiating a second process zone, since the shear stress zy  is approaching -10 MPa. In subplot b), the 

corresponding opening and sliding displacements are shown. A sliding displacement between 0.003 
and 0.5 mm, i.e., between critical displacements 0  and c  of the cohesive law, indicates that the 

corresponding cohesive element is inside the process zone. 

In Figure 9c the stress distribution in the cohesive elements is plotted at a loading displacement of 3 
mm. In the trapezoidal case (dashed line) two separate process zones have developed, the first being the 
crack that has initiated from the notch and the second being a crack that initiates at the far end of the 
specimen and propagates back towards the first crack.  These two cracks completely cover the left and 
right part of the specimen, where the stresses are constant and equal to +10 or -10 MPa (the critical 
traction value of the trapezoidal cohesive law). The load situation shown is the limiting case just before 
the two process zones join, which occurs as the sliding displacement of the pre-crack tip exceeds the 
critical displacement 0.05c  mm, see subplot b) at z = 20 mm. The described stress and 

displacement distribution in the cohesive elements along the bond line at load point displacements of 
1.2 and 3.0 mm, respectively, can be compared to the reaction-force and crack length plots in Figure 7. 
As the two process zones join at an applied displacement of 3.0 mm, the apparent crack tip instantly 
moves from 60 mm to 100 mm. 



The history of the process zone length in Fig. 8 (dashed curve) is influenced by the formation and 
growth of multiple process zones at applied displacements larger than 1.2 mm.  The zone length shows 
a plateau at around 40 mm, which is well below the small scale bridging length of Eq. (1),  lSSB   58 

mm for the trapezoidal law.  

In summary, when the geometry and cohesive laws parameters are such that the small scale bridging 
length is comparable to the half length of the specimen and the cohesive law is either trapezoidal or an 
increasing function of the relative sliding displacement multiple process zones may develop. The risk 
of this phenomenon, whose presence would complicate the inference of bridging laws, may be reduced 
by increasing the length of the specimen or reducing its thickness, as shown in the following section. 

 

5.3 Effect of increasing specimen length 

When the small scale bridging length is comparable to the half length of the ENF specimen, as in the 
case of a trapezoidal cohesive law and 2L = 100 mm, two independent process zones may develop 
during loading. Simulations for the quasi-static loading case suggest that this will not occur under 
dynamic conditions if the specimen is made significantly longer. If the specimen length L and the pre-
crack length  are increased while a fixed ratio  is maintained, the crack propagates at a smaller 

load. Since the nominal shear stress is proportional to the force applied to the loading point, the shear 
stress in the intact ligament distant from the pre-crack will not exceed the critical stress 

0a 0/L a

0  before the 

crack has propagated throughout the specimen. Results for specimens with through-thickness 
reinforcement and length 2L = 210 mm are plotted in Figure 10. In this specimen, the process zone 
lengths rise well above the small scale bridging limit for both cohesive laws when the crack is 
propagating in the first half of the specimen (approaching 60 mm and 72 mm for the triangular and 
trapezoidal laws respectively). They then decrease while the crack propagates in the second half to 32 
mm and 40 mm respectively. The process zone length for the trapezoidal cohesive law is smaller than 
the small scale bridging value of Eq. 1, 58 mm, at the end of the simulation. This is due to 
nonuniformity in the stress and displacement fields, as remarked above.  

6. Results for High-speed Loading 

In the following, results are presented for specimens with and without through-thickness reinforcement, 
with trapezoidal and triangular cohesive laws, loaded at high speed. A simple method is suggested for 
relating the process zone sliding speed to the crack tip speed and displacement profile. 

6.0 Laminates without Through-Thickness Reinforcement Loaded at High Speed 

Figures 11 and 12 refer to a specimen without through-thickness reinforcement, a load point velocity 
 = 20 m/s and a ramp time t0 = T1/2. Comparison with the quasi-static case in Figure 5 reveals 

dynamic effects. For the reaction force (Fig. 11a), dynamic effects consist of amplifications and 
oscillations; the process zone length (Fig. 12) builds up to a much larger value (27 mm) than in the 
quasi-static case (13 mm) but then quickly approaches an approximately constant value of 8.5 mm (the 
small scale bridging length of Eq. (1) is 13 mm).  In the crack propagation history (Fig. 11b), dynamic 
effects induce an interval, between 1 mm and 1.2 mm, where the crack tip speeds remain constant and 
equal to 1015 m/s, which is approximately 20% of the longitudinal wave speed of the material. In this 
interval, the crack profile remains approximately constant and crack propagation is approximately 
under steady-state conditions (this will be elaborated in Section 6.2). Similar intervals appear for other 

0v



loading rates between 5 and 30 m/s. It will be shown below that steady-state crack propagation 
domains can give important information about possible rate dependence in the cohesive law.  For 
loading rates above a certain velocity (equal to 30 m/s for this geometry, cohesive law and loading 
ramp time), multiple process zones may develop along with increased oscillations, which would make 
experimental results more difficult to interpret.  

6.1 Laminates with through-thickness reinforcement loaded at high speed 

Figure 13 shows results for a specimen with through-thickness reinforcement for load point velocity 
= 20 m/s and ramp time . Comparison with the quasi-static case in Figure 7 reveals dynamic 

effects for the reaction force in subplot a) in the form of relatively large oscillations, whereas the crack 
length history in subplot b) seems less affected. In the loading displacement interval of 4.0 to 5.0 mm, 
see subplot b), the leading and trailing edges move at approximately the same constant velocity of 158 
m/s, and furthermore, the sliding displacement profile is also approximately constant. This will be 
elaborated below. The progression of the process zone length in this simulation is presented in Fig. 14. 
After substantial variation during early propagation, when large scale bridging conditions prevail, the 
zone length tends at the right of the figure towards an approximately constant value, as the small scale 
bridging limit is approached.  Even then, the zone length is only approximately indicated by the 
analytical estimate of Eq. (1),  41 mm.  
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6.2 Sliding velocity in the process zone 

The process zone sliding speed is a useful rate measure, since it describes the rate of the fracture 
processes (i.e., the rate at which through-thickness reinforcement such as z-pins or stitches are loaded, 
failed, and pulled out of the laminate). For steady-state crack propagation, namely propagation under 
conditions of time-invariance for the crack displacement profile in the process zone and crack velocity, 
the local sliding speed in the process zone is related to the crack displacement profile and crack tip 
speed through the following relationship:  
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where   is a longitudinal coordinate with origin at the crack tip,  vtip is the crack tip velocity and i, for 
i = 1 or 2, is the opening or sliding displacement (Fig. 15a).  

Equation (2) defines the local sliding rate in all domains of steady-state crack growth as a function of 
the crack displacement profile and the crack tip speed, which are experimentally measurable quantities 
using a Digital Image Correlation (DIC) system. In addition, Eq. (2) can be used to verify if crack 
propagation is or can be approximated as steady-state in certain domains of crack growth in the 
numerical simulations. Figure 16 shows results for the specimens examined in Figs. 11 and 13 in the 
domains where steady-state conditions are suggested to hold at least approximately by the predicted 
crack tip speeds and crack profiles. The figure compares sliding velocities computed from simulations 
by (a) the right-hand side of Eq. (2), where the displacement profile (x) of the process zone at time tn 
is differentiated with regard to the -direction and multiplied by the crack tip speed, and (b) the 
difference in displacement between two time steps divided by the time step, i.e., ((,tn)-(,tn-1))/(tn-tn-

1), where tn-tn-1 is the time step, equal to 1/200 of the total time domain. The sliding velocity profiles 



computed by the two methods are presented for times corresponding to different applied displacements 
in the domains of presumed steady-state propagation. 

The sliding speed profiles computed by the simulation and those estimated using Eq. (2) correlate well. 
The sliding speed varies within the process zone from a minimum at the leading edge to a maximum at 
the trailing edge.  The horizontal solid lines in the figure show the average sliding speeds calculated 
over the process zone.  The 20% of the process zone closest to the crack tip is excluded from the 
average, because the profile tends to be highly nonlinear there (see Fig. 15b).  The near-tip domain is 
also difficult to measure accurately in an experiment and therefore is often a weak source of 
information.  

The average sliding speed, ave , estimated using Eq. (2) when crack growth is steady-state is given by: 
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where ...  denotes an average over the relevant part of the process zone. The average sliding speed 

obtained from the exact numerical results of simulations will equal ave   when crack growth is steady-

state; in addition, should the crack profile be linear, the local sliding speed along the process zone will 
be uniform and equal to the average ave everywhere. 

Another useful estimate of the average sliding rate within the process zone in steady state fracture is 
given by: 
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where lpz is the process zone length, with pz ssbl l  when the crack propagates in small scale bridging 

conditions.  For small scale bridging and at moderate crack tip speeds the ratio c

pzl


 becomes 

independent of crack speed and is a function of the fracture energy  only (see Eq. 1). Figure 15b 

shows how 
bG

est  compares with ave . The estimates of Eq. (3b) are shown in Fig. 16 with dashed lines. 

These estimates prove to be more stable in the regime of steady state growth than those obtained with 
Eq. (3a) (horizontal solid lines) since they depend on a global measure, , and not on the local details 

of the crack profile that are more affected by dynamic effects and numerical errors. The averaged 
quantities of Eqs. (3a) and (3b), when acceptably accurate, can be used to predict trends in behavior 
(see below). 

pzl

For the specimen with no through-thickness reinforcement, the average sliding speeds in the selected 
time interval of Fig. 16 are ave = 6.4 m/s and est = 6.0 m/s and the average length of the process zone 

is 8.2 mm; for the specimen with through-thickness reinforcement, the average sliding speeds are ave = 



3.4 m/s est = 2.9 m/s and the average length of the process zone 28 mm.  Thus through-thickness 

reinforcement tends to slow down the crack and extend the fracture process zone. 

Average sliding speeds and process zone lengths in the domains of steady-state propagation are 
presented for different loading speeds in Fig. 17. The results highlight that the average sliding speed 
across the process zone during steady-state propagation increases monotonically with the loading speed 
provided: (a) the length of the process zone remains similar for the different loading speeds, (b) 
multiple process zone formation is avoided and (c) the loading speed (and ramp time) is not so high 
(small) as to modify the response of the specimen (see Section 2). These conditions are satisfied in 
ENF specimens when the crack is propagating under approximate small scale bridging conditions for 
all loading speeds, as in the case of the specimen with no through-thickness reinforcement (Fig. 17b). 

While the simplified domain is useful for designing experiments, the full solution space also contains 
quite complex behaviour.  If the crack propagates under general large scale bridging conditions or 
when multiple process zones develop, the length of the process zone in the steady-state domains will 
vary significantly with loading speed, leading to corresponding variations in the response of the 
specimen. For example, the average sliding speed in the steady-state domains will decrease on 
increasing the loading speed (Fig 17a, specimen with through-thickness reinforcement). In addition, 
cases can be observed where steady-state propagation never occurs even if the crack is propagating 
under small scale bridging conditions, because the crack tip speed changes continuously during the 
fracture process; this typically occurs when the loading speeds are small and in the quasi-static case 
(see for instance Fig. 5).  Conversely, cases can be observed when multiple domains of steady-state 
propagation with different sliding speeds are observed in a single simulation.  These cases typically 
occur when the flexural oscillations of the specimen loaded dynamically cause propagation with 
alternating phases of crack arrest followed by phases of crack growth. 

The results indicate that measurements of the loading speed are not enough to infer rate effects in an 
ENF specimen, because of the variety of different possibilities for the details of the fracture process for 
similar loading rates.  Section 7 will show instead that the crack tip speed correlates with rates in the 
crack process zone and therefore experiments must attend to measuring the crack tip speed and 
preferably the crack profile as well.  (In the flying wedge specimen (Sridhar et al., 2002), both the 
crack tip speed and the length of the process zone are directly related to the loading speed, because the 
load is applied directly to the fracture surfaces at locations that follow the crack motion.  In such a case, 
steady-state crack propagation may occur both in small and large scale bridging, the problems above 
will not be present and the loading speed can be the reference parameter.  However, the flying wedge is 
a special case for mode I loading only.)   

7. Sensitivity to rate dependence in the cohesive law 

The question of whether a particular dynamic test will yield data that contain information about 
possible rate dependence in the cohesive law can be addressed by analyzing the solutions presented in 
the previous sections as though they were the outcome of actual tests.  Even this theoretical exercise is 
complex if undertaken most generally.  Therefore a simplified approach is taken here by restricting the 
domains of the solutions considered to those where steady-state conditions hold at least approximately 
and assuming idealized cohesive laws.  Considering a limited solution domain is conservative with 
respect to assessing information content, because the full domain must contain more information.  
Assuming idealized cohesive laws is also conservative, because even if a more general form of the law 
proves partly indeterminate when actual data are analyzed, the degrees of freedom that can be 



determined in it cannot be less than those inferred for the simpler law.  With the simplified approach, 
one can also work around the limitation of the ABAQUS code which was used in this study, that it 
cannot accept a general rate-dependent cohesive law. 

Consider a separable linear cohesive law of the form 

 

 iiii sqp             (i = 1,2; i  ic) (4a) 

 pi = 0                               (i > ic) (4b) 

 

which experiments have shown to be a useful approximation for stitches in tension (Turrettini, 1996) or 
shear (Massabò et al., 1998) and pins in tension or shear (Cartié et al., 2004) in cases of pure mode I or 
pure mode II loading.  (The question of whether Eq. (4) is appropriate for cases of mixed mode loading 
is a topic to resolve in the future with actual data.) For negative values of , the law defines the 

triangular laws used in the previous sections, which are good models of the intrinsic cohesive 
mechanisms of conventional tape laminates in the absence of through-thickness reinforcement.

is

1  
Assume that rate dependence consists of linear changes in the parameters of Eq. (4): 
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where , , and  are the parameter values for the static case, (0)
iq (0)

is (0)
ic i , i  and i  are dimensionless 

rate parameters, i i t     is the local sliding rate and  is the longitudinal wave speed (Table 1). lc

The discussion of Section 6 reveals that the crack velocity and the crack profile are approximately 
invariant with some values vtip and ( ) /i    for certain intervals during a delamination test, e.g., for 

load point displacements ranging from approximately 1 to 1.5 mm in the case of Fig. 11 or 4 to 5 mm 
in the case of Fig. 13. Tests of the sensitivity of an experiment to rate dependence are based here on 
analyzing the domains where the crack speed is uniform, vtip, and the profile is uniform and 
approximately linear, so that its slope is well represented by the average slope,   i . According to 

Eq. (3a) the product of vtip and the average slope   i  defines the average speeds, ,i ave , with i=2 

(sliding) or i=1 (opening). In this regime, the capacity of an experiment for testing rate dependence is 
therefore indicated by the range of values of the product   i vtip that can be attained, e.g., by 

varying the load point velocity. The product  i

                                                

 vtip also remains a good indicator of the capacity 

 
1 When the cohesive law of Eq. (4) is used with cohesive interface elements, an initial linear elastic branch needs to be 
included as in Fig. 3 to control numerical difficulties. The opening or sliding displacement of Eq. (4) is then given by the 
difference of the total displacement across the crack and the displacement at the end of the linear branch.  



of an experiment for testing rate dependence when the crack profile is not linear, as in the cases 
examined in Fig. 16, since its variations with crack tip speed gives an average measure of variations of 
the local sliding rates. 

A number of simulations were executed with cohesive laws of the form of Eq. (4) with different values 
of the parameters qi, si, and wi that were representative of the range expected a conventional tape 
laminate.    The linearly rising form of Fig. 3 was used for the load point displacement with various 
load point displacement rates, v0.  In each simulation, a rate-independent cohesive law was specified, 
because a limitation of ABAQUS is that general rate-dependent laws are not permitted.  However, in 
the domain where the crack profile is linear and the crack velocity is constant, a rate effect would 
simply imply different but fixed values of the parameters qi, si, and wi.  By examining this domain for 
different cases, behavior for a rate-dependent variation such as Eq. (5) can be re-constructed; a 
simulation is executed, the domain of constant velocity and linear displacement profile is identified, 
and the quantity   i vtip is evaluated for this domain.  The simulation is then taken to represent the 

law of Eqs. (3) and (4) for the value ,i ave = -   i vtip. 

To explore the procedure described above, simulations were performed on ENF specimens with 2L = 
100 mm, h = 5 mm and = 20 mm. The loading speeds were varied between 5 and 30 m/s with ramp 

times  or . A triangular cohesive law was used with maximum cohesive tractions and 

fracture energy varying in the following ranges: 

0a

1T0 1 / 2t T 0t 

0  = 10  50 MPa and  = 0.25  2.5 kJ/mbG 2. The 

small scale bridging length scales of Eq. (1), 0/(4 )SSB cl Eh  , corresponding to the different laws 

are recorded in Table 3 along with the process zone lengths measured in the simulations in the phases 
of steady-state growth. 

Domains of steady-state crack growth were identified by examining the curves of crack length versus 
applied displacement, e.g. Fig. 11, (which must be linear for steady-state conditions to be present), the 
speeds of the leading and trailing edge of the crack (which must be equal and constant) and the 
predictions of the average sliding speeds across the process zone obtained using the numerical results 
and Eq. (3) (the two predictions must be equal and constant in the domains of steady-state growth). 
Even in cases of steady-state propagation, large high frequency oscillations were observed in the crack 
tip speeds and the calculated average sliding speeds. These oscillations are a consequence of the 
dynamically applied load and the numerical discretization and their presence considerably complicates 
the identification of the steady-state domains. Steady-state domains were identified by the conditions 
that: the average values of the two crack tip speeds are similar; the average values of the two calculated 
average sliding speeds across the process zone are similar and the relative error between the two 
predictions falls below a limit value (selected as 10%). Only steady-state domains, where the process 
zone length  would remain similar on varying the loading speed, have been considered. This 

assumption allows general conclusions to be drawn from results for different loading speeds. 
pzl

The characteristics of identified steady-state domains are summarized in Figs. 18. Figure 18a shows the 
average sliding speeds in the steady-state domains obtained for different cohesive laws as a function of 
the loading speed. The average sliding speed generally increases with the loading speed, with the 
interesting variation that different domains of steady-state growth can occasionally be observed for the 

same value of the loading speed, e.g., for 0  = 30 MPa  and = 0.5 kJ/mbG 2 (they occur at different 

stages of crack growth). This is true also for 0  = 30 MPa  and = 1.0 kJ/mbG 2, where, however, for 

loading rates above 30 m/s the average crack sliding speed decreases.  



 

Figure 18b shows the average sliding speeds in the steady-state domains as functions of the 
corresponding crack tip speeds for different cohesive laws. Points appear in pairs, plotted using the 
speeds of both the leading and the trailing edges of the crack.  The closeness of the two points in any 
pair indicates the accuracy to which the steady state is attained. The corresponding process zone 
lengths  are recorded in Table 3 along with the average crack tip speeds. The dashed curves in Fig. 

18b are interpolating functions constrained to pass through the origin (

pzl

ave  = 0,  = 0).  The 

monotonic trends of these curves is key to interpreting experiments: changing the crack tip speed 
causes significant and useful changes in the crack sliding speed, at least in the steady-state. In addition, 
the interpolating curves in Fig. 18b show a linear trend at moderate speeds that indicates that 

tipv

  i  

is approximately constant on varying , Eq. (3), so that the cracks are propagating under small scale 

bridging conditions with an approximately constant size of the process zone length  
tipv

pz ssbl l . 

Variations from the linear trend for larger speeds can be due to crack propagation conditions that differ 
from those of small scale bridging (typically leading to larger ) or to changes in the small scale 

bridging crack profile due to high speeds (leading to shorter ). 
pzl

pzl

The results in this and the previous sections show that a significant range of crack sliding speeds can be 
generated in dynamic ENF tests for loading rates in the range of those that can be applied using a 
Kolsky bar system, encouraging the expectation that any rate dependence in the bridging constitutive 
behaviour can be determined. 

Figure 19 shows average sliding speeds in the steady-state domains as functions of the crack tip speed 
for three cohesive laws characterized by different values of the maximum traction and the critical 

displacement and the same fracture energy = 0.5 kJ/mbG

b

2. The numerical results align nicely on a 

single curve, which is also well approximated by a straight line for crack tip speeds below 0.2 cl. This 
is expected because, in all cases studied, crack propagation in the steady-state domain does occur under 
conditions that are approximately small scale bridging, where the response should depend only on the 
area beneath the cohesive traction law, , and not on its details.  If, for example, the critical 

displacement is varied at fixed Gb, the ratio of the zone length to the critical crack displacement 
remains constant (see Eq. 1) so that the sliding speed estimate of Eq. (3b) remains constant.  See also 
Table 3. 

G

For small-scale bridging conditions, any material rate dependence that manifests itself in the cohesive 
fracture law should only affect the fracture energy  through changes in the average sliding speeds, bG

ave  or est , (or the crack tip speed, vtip, which is proportional to ave  and est  in steady-state 

propagation). The three rate parameters of Eq. (5) do not act independently; only their effect on the 
fracture energy (the area under the cohesive law) influences behaviour.  In the case of linear rate 
dependence, this behavior can be described by the following relationship:  

 

  (0)
3

(1 )
10

est
b b

l

G G
c

  


  (6) 



where is the quasi static value of , (0)
bG bG est  is the estimated average sliding speed in the process 

zone, Eq. 3b, and  is a dimensional constant, whose value is kept near unity by the presence of the 
factor 103.  

Figure 20a presents again the numerical results of Fig. 18b through the estimated average sliding speed, 

est  Eq. (3b), in the range of moderate crack tip speeds where the response can be approximated as 

linear. The dashed lines in the figure are linear interpolations of data corresponding to different 
cohesive laws, constrained to pass through the origin and, according to Eq. (3b), their slopes define the 
ratios c ssbl , which give average measures of the process zone lengths of the different materials. For 

instance, the curve for  G = 0.5 kJ/m2 has a slope b  c ssbl =0.0073, so that ssbl = .56, 6.85 and 13.7 mm 

for c

 4

 = 0.033, 0.05 and 0.1 mm. These predictions of the small scale bridging length scale can be 

compared with the predictions of Eq. (1), shown in Table 3, to highlight again the influence of the non-
uniform tractions acting along the crack when the crack propagates in the right hand part of the 

specimen: the numerical process zone length is approximately 0.53 0/(Eh 4 )c   . The same ratio is 

observed for the other assumed cohesive laws in Fig. 20a. 

The dashed lines in the diagram of Fig. 20b summarize the response of rate independent materials 

propagating in small scale bridging in the steady state regime through the function c
est tip

ssb

v
l

  , with  

ssbl =0.53 0/(4 )cEh   and =  = 0.1  2.5 kJ/m2.  These curves can be used to construct steady-

state behavior for a hypothetical rate-dependent material.  For the examples shown, the rate dependent 
material is assumed to have the linear rate dependence of Eq. (6) and  = 0.25 kJ/m2.  Each solid 

curve in the figure describes the response for an assumed value of the rate parameter 

bG (0)
bG

(0)
bG

 ; the curve 
intersects the dashed curves corresponding to the different  at the average sliding speed bG est  given 

by Eq. (6). The thick dashed curve with  = 0 define the response of a rate independent material with 
 = 0.25 kJ/m2.   (0)

bG

For low crack tip speeds, the influence of rate effects on the average sliding speed is limited: when 
< 50 m/s, variations in tipv est  due to rate effects remain below 10% even if the rate parameter   is 

varied substantially from 0.0 to 10 ( =10 for the material tested here gives  (0) (1 1.8 )b b estG G    ). The 

same is true for all < 100 m/s when tipv   remains below 5.0 (which corresponds to 
(0) (1 0.9 )b b estG G    ) . For higher crack tip speeds, rate dependence in the cohesive law can be readily 

observed in the numerical solutions (and therefore in experiments). For a crack tip speed of 400 m/s, 
for instance, the average sliding speed of 2 m/s of a rate independent material, increases to 2.5 m/s 
when   = 1 (and =0.4 kJ/m2) and to 3.5 m/s for bG   = 3 (and =0.7 kJ/m2).  A rough guide for test 

design is inferred to be that the test should achieve crack velocities in excess of 100 m/sec.  However, 
as observed in the numerical simulations performed above, only crack speeds below certain limit 
values are accessible in the tests since increasing the loading speed above certain values typically leads 
to multiple crack formation and other complicating mechanisms that might be advantageous for 
engineering performance but are unwelcome in tests intended to calibrate rate dependence. The limit 
values depend on the geometry of the specimen and the elastic and inelastic properties of the material.   

bG



Maps similar to that shown in Fig. 20b can be constructed for different values of the quasi-static 
fracture energy . In the maps the dashed line corresponding to a rate independent material with  

=  will define the lower envelope of the curves for the hypothetical rate dependent material.  The 

behavioral maps can be used to interpret experimental results in domains of steady state growth in ENF 
specimens. The main limitations in the use of the maps are due to the assumption of small scale 
bridging crack growth that has been used to construct them. This limitation is removed when dealing 
with fracture tests where the length of the process zone during dynamic crack growth is directly related 
to the loading speed, the geometry of the specimen and the cohesive parameters.  An example of such a 
specimen is the flying wedge specimen for mode I fracture analysis (Sridhar et al., 2002). In the flying 
wedge specimen, after a transient phase, crack propagation occurs under steady-state conditions, 
considerably simplifying the analysis of the problem (Massabò et al., in preparation).  

(0)
bG bG

(0)
bG

 

8. Conclusions 

A numerical investigation has been presented aimed at designing a test geometry and a loading 
procedure to infer mode II dynamic cohesive laws for through-thickness reinforced laminates from 
dynamic End Notched Flexural tests. The design of the test geometry was concerned with the size of 
the specimen (length and thickness) and the length of the initial notch; the design of the displacement 
controlled loading procedure including the loading speed and the time to ramp the loading speed from 
zero to the required value. Idealized rate-independent cohesive laws with parameters chosen to 
represent either through-thickness reinforcement, such as z-pins, or unreinforced laminates were used 
in simulations.  Behavior expected for rate-dependent cohesive laws was inferred from limiting 
solutions.  

The analyses show the existence of regimes, within the full computed solution space, where crack 
growth is approximately steady-state. A simplified approach to inferring rate effects in the cohesive 
law can then be taken by restricting the domains of the solutions considered to the steady state 
domains. Considering a limited solution domain is conservative with respect to assessing information 
content, because the full domain must contain more information.   

In the steady state regimes, the local sliding speed in the process zone, which is the parameter that 
controls rate effects in the cohesive law, is a known function of the crack tip speed and the sliding 
displacement profile.  Both of these quantities could be measured using a digital image correlation 
system.  In addition, the average sliding speed along the process zone when the crack is propagating in 
steady-state conditions coincides with the local sliding speed if the profile is approximately linear. In 
this case numerical solutions obtained for a rate-independent cohesive law would represent general 
rate-dependent materials since a rate effect would simply imply different but fixed values of the 
cohesive parameters.  

By examining the steady state domains for different rate independent cases, behavior for assumed rate-
dependent variations can be re-constructed. In the ENF specimen this can be done if the crack is 
propagating in small scale bridging conditions; in other specimens where the load is applied directly 
onto the crack surfaces, such as the mode I flying wedge specimen, behavior of rate-dependent 
materials can also be reconstructed for general large scale bridging conditions using solutions for rate-
independent materials.  

The design of the test procedure was based on the requirements listed in the Introduction, for which the 
following conclusions are reached.  



- Generate dynamic crack propagation in the range of speeds where the action of through-
thickness reinforcement will be relevant. This requirement indicates that large crack speeds 
should be avoided, namely when the crack tip speed should be lower than 20-30% the 
longitudinal wave speed, c ; for large crack speeds the fracture process is 

dominated by the kinetic energy and the effects of the reinforcement on the solution become 
negligible.  The analyses performed show that very large crack tip speeds are not easily 
obtained in ENF tests since increasing the loading speed above a certain limit induces other 
unwelcome mechanisms that prevent the crack tip from reaching very high speeds, such as the 
formation of multiple delaminations (the same effect is observed by decreasing the loading 
ramp time). Ramp times on the order of the first period of vibration of the specimen, 

10.5 1 T , and loading speeds in the range of those that can be applied using a Kolsky bar 

system, , satisfy this requirement. 

0.2 0.3tip lv  

0t  

0v 5 40 m/s 

- Generate dynamic crack propagation in the range of speeds where rate effects in the cohesive 
parameters will be measurable.  The analyses show that rate effects in the cohesive laws are 
expected to be measurable in the experimental tests since significant and useful changes in the 
average sliding speeds can be obtained by varying the loading speeds in the range applicable 
using a Kolsky bar. In addition, very low crack speeds should be avoided since rate effects will 
not be easily measurable there; for instance, for crack propagation in the small scale bridging 
limit and the linear rate dependence assumed in Eq. (6), the crack tip speeds should be 

0.02c   (Fig. 20b).  tip lv

- Generate crack propagation in the domain where the process zone is developing and also where 
it is fully developed, thus maximizing the information content pertaining to all model 
parameters; crack propagation should be stable an initial domain of growth to facilitate the 
derivation of the parameters. To satisfy this requirement the half-length of the ENF specimen 
should be several times longer than the small scale bridging characteristic length scale, which is 
a function of the square root of the thickness of the specimen; and the length of the notch should 
be kept long enough. While this requirement can be satisfied in conventional tape laminates, 
where ssbl  remains in the range 5-20 mm, using sufficiently long specimens in through-

thickness reinforced laminates, where ssbl = 40-60 mm (in the examples shown) would lead to 

very long and much too compliant specimens.  

- When the crack is propagating in the second half of the specimen, the stress field is not uniform 
along the crack surfaces and differs from that for which the characteristic length scales of the 
problem were derived; in addition, friction along the crack surfaces below the loading point 
would affect the results and should be properly modelled. 

- Avoid the formation of multiple cracks in the specimen. The initiation and propagation of 
cohesive cracks in locations other than the initial notch is controlled by the geometry of the 
specimen and the loading procedure. The mechanisms can be avoided using longer specimens, 
increasing the ramp time and reducing the loading speed. In addition, the shape of the cohesive 
law has an important effect on this mechanism: multiple cracks are more likely when the 
bridging tractions are an increasing function of the relative crack displacement. 

- Avoid failure by mechanisms other than delamination fracture, namely compressive or tensile 
failure at the midspan. To satisfy this requirement shorter and thicker specimens should be used.  



- Avoid large flexural oscillations of the specimen as well as the development of high order, high 
frequency waves in the desired range of crack speeds. This requirement leads to the same 
limitations on ramp times and loading speeds listed above and limits the compliance of the 
specimen, whose dimensions were set equal to 2L = 100 mm and 2h = 10 mm.  
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TABLES 

Table 1.  Material properties for quasi-isotropic carbon/epoxy laminate related to coordinate system 
in Figure 1. The ultimate stresses u  in tension and compression are obtained from experiments 

presented in Soden et al. (2002). 

 

zE , xE  50 GPa 

yE  10 GPa 

zy , xy , zx  0.28 

zyG , xyG  5 GPa 

zxG  / 2(1 )z zE x  

  (mass density) 1600 kg/m3 

z
l

E
c


  

 
5590 m/s 

u  (tension) 750 MPa 

u  (compression) 630 MPa 

 

Table 2:  Parameters defining the three cohesive laws used in most simulations. 
 

0  [MPa] c  [mm] 
bG  [kJ/m2]  

Not reinforced 
(triangular) 

20 0.05 0.5 

Reinforced 
(triangular) 

20 0.5 5.0 

Reinforced 
(trapezoidal) 

10 0.5 5.0 



 

Table 3 - Small scale bridging length scale, 0/(4 )SSB cl Eh  , Eq. (1), for triangular cohesive laws with the parameter values used in the 

numerical simulations of Fig. 18; numerical process zone lengths and crack tip speeds in the approximate steady-state domains of Fig. 18. 

 

pzl , process zone length - simulations (mm)                      

 
SSBl (mm) 

(Eq. 1) 
0v  = 5 m/s 0v  = 10 m/s 0v  = 20 m/s 0v  = 30 m/s others (m/s) 

bG = 0.25 kJ/m
2
, 0 = 20 MPa  

9.2 4.9 (vtip=226) 

  

4.85 (vtip=352) 

5.0 (vtip=459) 

5.1 (vtip=1016) 5.3 (vtip=838) 5.4 (  = 15) (vtip=876) 0v

bG = 0.5 kJ/m
2
, 0 = 20 MPa  

13 8.7 7.1 8.2 - - 

bG = 0.5 kJ/m
2
, 0 = 30 MPa  
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Figure 1:  Dimensions of End Notched Flexural specimen (ENF) and reference system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Exploded schematic illustration of an ENF specimen in the finite element model. Zero-
thickness cohesive elements constitute the bonding between the beams, and contact interaction 

prevents interpenetration.  
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Figure 3:  Trapezoidal and triangular cohesive laws used in the simulations.  
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Figure 4:  Schematic displacement (a) and velocity (b) histories for the load point in the 
simulations. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Results for quasi-statically loaded ENF specimen with 2L = 100 mm and cohesive law 

corresponding to triangular with no reinforcements ( 0.05 mmc   and = 0.5 kJ/mbG 2 ). In both 

sub-plots the horizontal axis represents the load point displacement, see Figure 1. The sub-figures 
are a) reaction force at loading point, and b) position of leading (black line) and trailing (red line) 
edge of the process zone. The dashed line in subplot b) is the load-displacement curve of a 
completely damaged specimen (two beams each of thickness h) calculated from shear deformable 
beam theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Process zone length, i.e. the vertical distance between the black and red lines in Figure 
5b, as a function of loading displacement (small scale bridging length SSBl  13 mm, Eq. 1). 
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Figure 7:  Results for a mode II ENF specimen loaded under quasi-static conditions with 2L = 100 

mm,  and = 5.0 kJ/m0 20 mma  bG 2. Cohesive laws correspond to fracture properties with 

reinforcements where the solid line represents the triangle-shaped and the dashed is the trapezoidal. 
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Figure 8:  Process zone length corresponding to results described in Figure 7 (small scale bridging 
lengths: 41 mm (triangular) and SSBl  SSBl  58 mm (trapezoidal) ).  
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Figure 9:  (a) and (b) Stresses ( zy yy, shear, and ,  normal  ) and relative displacements 

( z y, sliding, and ,  opening  ) along the cohesive elements at an applied displacement of 1.2 mm in 

the simulation presented in Fig. 7. The pre-notch tip is located at z = 20 mm. The solid line 
represents the triangular cohesive law and dashed the trapezoidal. (c) and (d) solutions at an applied 

displacement of 3 mm. 
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Figure 10:  Quasi-static results for large specimen, 2L = 210 mm, 0 40 mma  and = 5.0 kJ/mbG 2. 

Cohesive laws correspond to fracture properties with reinforcements, the solid line is triangular and 
the dashed is trapezoidal. 
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Figure 11:  Results for specimen with 2L = 100 mm, 0 20 mma  , v  = 20 m/s and . 

Cohesive law is triangular corresponding to no reinforcement (
c
=0.05 mm). In both sub-plots the 

horizontal axis represents the load point displacement. The sub-figures are a) reaction force at 
loading point, and b) position of leading and trailing edge of the process zone. 
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Figure 12:  Process zone length, i.e. the vertical distance between the black and red lines in Figure 
11, as a function of loading displacement (small scale bridging length 13. mm). SSBl 
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Figure 13:  Results for specimen with 2L = 100 mm, 0 20 mma  , v = 20 m/s and . Cohesive 

laws correspond to a z-pinned laminate, the solid line is triangular and the dashed is trapezoidal. 
0t T 1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14:  Process zone length, i.e. the vertical distance between the black and red lines in Figure 
13, as a function of loading displacement (small scale bridging length after Eq. (1),  41 mm). SSBl 
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Figure 15: (a) Schematic illustration of opening profile for a pure mode I crack. (b) Exemplary 
sliding profile in the process zone: numerical solution (solid line), average profile along relevant 

portion of the process zone (dashed line), estimate of average profile obtained joining leading and 
trailing edges (dotted line). 
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Figure 16:  Actual relative sliding speeds in the process zone (from direct numerical calculations) 
and those predicted by Eq. (2). The simulations corresponds to results in Figures 11 (diagrams a-c) 
and 13 (diagrams d-f), at load point displacements of 1.06, 1.15, 1.19 mm (subplots a-c) and 4.1,  
4.6 and 4.9 mm (subplots d-f). The horizontal solid lines define average sliding speeds calculated 
over the relevant part of the process zone; the horizontal dashed line defines average estimate as 
given in Eq. (3b). 
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Figure 17. Average sliding speeds in the process zones in domains of steady-state crack propagation 

in (a) specimens with through-thickness reinforcement with = 5.0 kJ/mbG 2 (small scale bridging 

length of Eq. (1), 41 mm). (b) specimens with no through-thickness reinforcement with = 

0.5 kJ/m

SSBl  bG
2 (small scale bridging length of Eq. (1), SSBl   13 mm). 
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Figure 18. Average sliding speeds in the process zones in domains of steady-state crack propagation 
and small scale bridging as functions of (a) the loading speed and (b) the crack tip speed for 

different triangular cohesive laws.  The smooth dashed curves in (b) are interpolating functions used 
to construct plots of anticipated trends for hypothetical rate-dependent materials. 
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Figure 19. Average sliding speeds in the process zones in domains of steady-state crack propagation 
and small scale bridging as functions of the crack tip speed for three triangular cohesive laws with 

fracture energy = 0.5 kJ/mbG 2. 
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(b) 
Figure 20. (a) Average sliding speeds predicted within the process zones in domains of steady-state 
crack propagation as functions of the crack tip speeds; the dashed lines are interpolating functions. 

(b) Average sliding speeds predicted within the process zones in domains of steady-state crack 
propagation and small scale bridging as functions of the crack tip speeds for rate independent 
materials, Eq. (3b) and hypothetical rate-dependent materials (solid curves) with quasi static 

fracture energy =0.25 kJ/m2 and rate dependence given by Eq. (6). (0)
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